Skip to main content
Log in

X-ray Structure Analyses of 4-Hydroxy-1-Methylquinolin-2(1H)-One, 6-Ethyl-4-Hydroxy-2 H-Pyrano[3,2-c]Quinoline-2,5(6H)-Dione, (E)-4-(2-Benzylidene-Hydrazineyl)Quinolin-2(1H)-One and Diethyl (E)-2-(2-(1-Methyl-2-Oxo-1,2-Dihydro-Quinolin-4-yl)Hydrazineylidene)Succinate

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The X-ray structure analyses of 4-hydroxy-1-methylquinolin-2(1H)-one (1), 6-ethyl-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6 H)-dione (2), (E)-4-(2-benzylidene-hydrazineyl)quinolin-2(1H)-one (3), and diethyl (E)-2-(2-(1-methyl-2-oxo-1,2-dihydroquinolin-4-yl)hydrazineylidene)-succinate (4), were carried out. The aforementioned compounds showed strong intramolecular hydrogen bonds which play important roles in the crystal packing of them.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no data-sets were generated or analysed during the current study.

Notes

  1. Distance for pi–pi interaction defined by the distance between the L.S. plane of the molecule and the center of gravity of the symmetry related molecule, generated by the given symmetry operator.

  2. Distance for pi–pi interaction defined by the distance between the L.S. plane of the molecule and the center of gravity of the symmetry related molecule, generated by the given symmetry operator.

  3. Distance for π–π interaction defined by the distance between the L.S. plane of the molecule and the center of gravity of the symmetry related molecule, generated by the given symmetry operator.

References

  1. Akhtar MJ, Yar MS, Khan AA, Ali Z, Haider MR (2017) Recent advances in the synthesis and anticancer activity of some molecules other than nitrogen containing heterocyclic moeities. Mini-Rev Med Chem 17(17):1602–1632

    Article  CAS  PubMed  Google Scholar 

  2. Arafa RK, Hegazy GH, Piazza GA, Abadi AH (2013) Synthesis and in vitro antiproliferative effect of novel quinoline-based potential anticancer agents. Eur J Med Chem 63:826–832

    Article  CAS  PubMed  Google Scholar 

  3. Lee H-Y, Chang C-Y, Su C-J, Huang H-L, Mehndiratta S, Chao Y-H, Hsu C-M, Kumar S, Sung T-Y, Huang Y-Z (2016) 2-(Phenylsulfonyl) quinoline N-hydroxyacrylamides as potent anticancer agents inhibiting histone deacetylase. Eur J Med Chem 122:92–101

    Article  CAS  PubMed  Google Scholar 

  4. Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, Bawa S (2015) A review on anticancer potential of bioactive heterocycle quinoline. Eur J Med Chem 97:871–910

    Article  CAS  PubMed  Google Scholar 

  5. Ramesh M, Mohan P, Shanmugam P (1984) A convenient synthesis of flindersine, atanine and their analogues. Tetrahedron 40(20):4041–4049

    Article  CAS  Google Scholar 

  6. Chen I-S, Tsai I-W, Teng C-M, Chen J-J, Chang Y-L, Ko F-N, Lu MC, Pezzuto JM (1997) Pyranoquinoline alkaloids from Zanthoxylum simulans. Phytochemistry 46(3):525–529

    Article  CAS  Google Scholar 

  7. Wabo HK, Tane P, Connolly JD, Okunji CC, Schuster BM, Iwu MM (2005) Tabouensinium chloride, a novel quaternary pyranoquinoline alkaloid from Araliopsis tabouensis. Nat Prod Res 19(6):591–595

    Article  CAS  PubMed  Google Scholar 

  8. Magesh CJ, Makesh SV, Perumal PT (2004) Highly diastereoselective inverse electron demand (IED) Diels–Alder reaction mediated by chiral salen–AlCl complex: the first, target-oriented synthesis of pyranoquinolines as potential antibacterial agents. Biorg Med chem lett 14(9):2035–2040

    Article  CAS  Google Scholar 

  9. Siliveri S (2017) Design, synthesis and antibacterial evaluation of pyrano[3,2-H]quinoline carbonitriles. Int J Gre Pharm (IJGP) 11(03):423–429

    Google Scholar 

  10. Martínez-Grau A, Marco J (1997) Friedländer reaction on 2-amino-3-cyano-4H-pyrans: synthesis of derivatives of 4H-pyran[2,3-b]quinoline, new tacrine analogues. Biorg Med chem lett 7(24):3165–3170

    Article  Google Scholar 

  11. Kamperdick C, Van NH, Van Sung T, Adam G (1999) Bisquinolinone alkaloids from Melicope ptelefolia. Phytochemistry 50(1):177–181

    Article  CAS  Google Scholar 

  12. Chen J-J, Chen P-H, Liao C-H, Huang S-Y, Chen I-S (2007) New phenylpropenoids, bis (1-phenylethyl) phenols, bisquinolinone alkaloid, and anti-inflammatory constituents from Zanthoxylum integrifoliolum. J Nat Prod 70(9):1444–1448

    Article  CAS  PubMed  Google Scholar 

  13. Isaka M, Tanticharoen M, Kongsaeree P, Thebtaranonth Y (2001) Structures of cordypyridones A–D, antimalarial N-hydroxy-and N-methoxy-2-pyridones from the insect pathogenic fungus Cordyceps nipponica. J Org Chem 66(14):4803–4808

    Article  CAS  PubMed  Google Scholar 

  14. Koizumi F, Fukumitsu N, Zhao J, Chanklan R, Miyakawa T, Kawahara S, Iwamoto S, Suzuki M, Kakita S, Rahayu ES (2007) YCM1008A, a novel Ca^ 2^+-signaling inhibitor, produced by Fusarium sp. YCM1008. J Antibiot 60(7):455

    Article  CAS  Google Scholar 

  15. El-Agrody AM, Abd-Rabboh HS, Al-Ghamdi AM (2013) Synthesis, antitumor activity, and structure–activity relationship of some 4H-pyrano[3,2-h]quinoline and 7H-pyrimido[4′,5′:6, 5]pyrano[3,2-h] quinoline derivatives. Med Chem Res 22(3):1339–1355

    Article  CAS  Google Scholar 

  16. Hammouda MA, El-Hag FAA, El-Serwy WS, El-Manawaty M (2015) Synthesis and characterization of new fused 4H-pyranquinoline carbonitrile derivatives with anticipated antitumor biological activity. Res J Pharm Bio Chem Sci 6(1):200–208

    Google Scholar 

  17. Fouda AM (2017) Halogenated 2-amino-4H-pyrano[3,2-h]quinoline-3-carbonitriles as antitumor agents and structure—activity relationships of the 4-,6-,and 9-positions. Med Chem Res 26(2):302–313

    Article  CAS  Google Scholar 

  18. Maalej E, Chabchoub F, Oset-Gasque MJ, Esquivias-Pérez M, González MP, Monjas L, Pérez C, de los Ríos C, Rodríguez-Franco MI, Iriepa I (2012) Synthesis, biological assessment, and molecular modeling of racemic 7-aryl-9,10,11,12-tetrahydro-7H-benzo[7,8]chromeno [2, 3-b]quinolin-8-amines as potential drugs for the treatment of Alzheimer’s disease. Eur J Med Chem 54:750–763

    Article  CAS  PubMed  Google Scholar 

  19. Nesterova I, Alekseeva L, Andreeva N, Golovina S, Granik V (1995) Synthesis and study the pharmacological activity of derivatives of 5-dimethylaminopyrano[3,2-c]quinolin-2-ones. Pharm Chem J 29(2):111–114

    Article  Google Scholar 

  20. Knorr L (1986) Synthetische Versuche mit dem Acetessigester. J Liebig Ann Chem 236:69–115

    Article  Google Scholar 

  21. Staskun B (1964) The conversion of benzoylacetanilides into 2- and 4-hydroxyquinolines. J Org Chem 29:1153–1157

    Article  CAS  Google Scholar 

  22. Stadlbauer W, Hojas G (2004) Ring closure reactions of 3-arylhydrazonoalkyl-quinolin-2-ones to 1-aryl-pyrazolo[4,3-c]quinolin-2-ones. J Heterocycl Chem 41:681–690

    Article  CAS  Google Scholar 

  23. Elbastawesy MAI, Ramadan M, El-Shaier YAMM, Aly AA, Abuo-Rahma G, El Din A (2020) Arylidenes of Quinolin-2-one scaffold as Erlotinib analogues with activities against leukemia through inhibition of EGFR TK/ STAT-3 pathways. Biorg Chem 96:103628

    Article  CAS  Google Scholar 

  24. Elbastawesy MAI, Aly AA, Ramadan M, Elshaier YAMM, Youssif BGM, Brown AA, Abuo-Rahma G, El-Din A (2019) Novel pyrazoloquinolin-2-ones: design, synthesis, docking studies, and biological evaluation as antiproliferative EGFR-TK inhibitors. Biorg Chem 90:103045

    Article  CAS  Google Scholar 

  25. Sheldrick GM (2015) Integrated space-group and crystal-structure determination. Acta Crystallogr A71:3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  26. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf A. Aly.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 1614.3 kb)

Supplementary material 2 (PDF 394.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, A.A., Nieger, M., Bräse, S. et al. X-ray Structure Analyses of 4-Hydroxy-1-Methylquinolin-2(1H)-One, 6-Ethyl-4-Hydroxy-2 H-Pyrano[3,2-c]Quinoline-2,5(6H)-Dione, (E)-4-(2-Benzylidene-Hydrazineyl)Quinolin-2(1H)-One and Diethyl (E)-2-(2-(1-Methyl-2-Oxo-1,2-Dihydro-Quinolin-4-yl)Hydrazineylidene)Succinate. J Chem Crystallogr 53, 38–49 (2023). https://doi.org/10.1007/s10870-022-00939-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00939-z

Keywords

Navigation